General physics lab 202

Student's name:....

Student's number:.....

Experiment 1 : Faraday Ice Pail and Charge Production

Charging by Induction vs. Charging by Contact

Insert the charged object into the ice pail, but <u>without</u> letting it <u>touch</u> the pail.

Charge producer	Electrometer reading
Blue	
White	

 \triangleright Remove the object

Charge producer	Electrometer reading
Blue	
White	

Push the Zero button to remove any residual charge. Insert the object again, but let it touch the ice pail.

Charge producer	Electrometer reading
Blue	
White	

Remove the object and note the electrometer reading

Charge producer	Electrometer reading
Blue	
White	

Conservation of Charge

Use the Faraday Ice Pail to measure the <u>magnitude and polarity</u> of each of the charged wands by inserting them one at a time into the ice pail and noting the reading on the electrometer.

Charge producer	Electrometer reading
Blue	
White	

Insert both charge producers into the ice pail and <u>rub them</u> <u>together</u> inside the pail. Note the electrometer reading. <u>Do not</u> let the charge producers <u>touch</u> the pail.

Electrometer reading

- What is the relation between the magnitude of the charges?
- What is the relation between the polarity of the charges?
- Was charge conserved in the demonstration?

General physics lab 202

Experiment 1 : Charge Distribution

> Place the two aluminum spheres at least 50 cm.

	Right	Left	Up	Down	Front	Back
Electrometer reading						

..... charge distribution.

> Place the two aluminum spheres $\underline{1cm.}$ Turn the voltage source \underline{ON}

	Right	Left	Up	Down	Front	Back
Electrometer reading						

..... charge distribution.

Momentarily ground the sampling sphere again, by touching one hand to the grounded ice pail shield and the other hand to the sphere.

	Right	Left	Up	Down	Front	Back
Electrometer reading						

..... charge distribution.

 \blacktriangleright Remove the charged sphere until it is at least <u>50 cm</u> away from the sampling sphere.

	Right	Left	Up	Down	Front	Back
Electrometer reading						
			charg			